If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-80.5x+1470=0
a = 1; b = -80.5; c = +1470;
Δ = b2-4ac
Δ = -80.52-4·1·1470
Δ = 600.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80.5)-\sqrt{600.25}}{2*1}=\frac{80.5-\sqrt{600.25}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80.5)+\sqrt{600.25}}{2*1}=\frac{80.5+\sqrt{600.25}}{2} $
| 78=0.5x+20 | | X^3-6x^2+7x-8=0 | | 5x10=-3(x+2) | | 4x-18=8x+12 | | 49x-441=1323 | | 0.49x^2-13x+40=0 | | 3/5=x10/ | | 2x-1=240 | | 6•(x+5)=126 | | 1.35*x-x=625 | | 3x-1=240 | | 1.74=0.75^t | | -0,12(x+8)=2,4-0,08x | | 5w+2=2w-10 | | 2^x=36^12 | | 0,6(x+2)-(0,4x–0,6)=0,2(1–x) | | 5d-3=15-d | | 72j/9=8+3j+7 | | -16v+2v+15v=3 | | 9c+2=26-3c | | 7h-5h+3h-5h+4h=20 | | 8t-7=6t+11 | | 10h-3=6h+17 | | 7b+1=4b+10 | | -(x+1)+8x=5x–9 | | 19j-6j-8j-2j=12 | | 2x2+3√2x=-2√3 | | 3^0.3^2x=27 | | 2x+6=3x–12 | | M=15+5u | | 8r(r-3)=0 | | X+3x=36-9 |